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On the thermocapillary motion of partially
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In this work the thermocapillary-induced motion of partially engulfed compound
drops is considered. This phenomenon occurs in many natural and technological
processes in which heat is exchanged between such hybrid drops and the medium
around them through the interfaces. Two types of thermal fields and the resulting
motions are studied; flow induced by an external temperature gradient and spon-
taneous thermocapillary motion. For the first flow type, it was found that, in general,
the motion is induced in the direction of the temperature gradient. However, under
certain physical conditions and drops’ configuration a motion against the temperature
gradient may be observed. In the second case, spontaneous thermocapillary motion,
the compound drop moves due to surface tension gradients which result from the
geometric non-uniformity of the system. Results are presented for several parameters
such as configuration of the compound drop, viscosity, thermal conductivity ratio,
the dependence of the various interfacial tensions on temperature and the volume
ratio of the phases within the drop.

1. Introduction
Compound drops are comprised of two or more immiscible phases. They occur

in various natural and technological processes such as melting of ice particles in the
atmosphere, direct contact heat exchange, rapid evaporation of drops in a super-
heated liquid, liquid membranes and liquid bi-layers, etc. Torza & Mason (1970)
were the first to study a static two fluid drop configuration as well as the dynamics
of engulfing and coalescence. They showed that the occurrence of a particular type
of configuration (complete engulfment, partial engulfment or non-engulfment) was
determined solely by the values of surface tension between the three phases. In the case
of partial engulfment, the three interfaces at equilibrium are segments of spheres and
the resulting configuration of the aggregate depends on the volumes of the two droplets
(see figure 1). Vuong & Sadhal (1989a) have studied the fluid dynamics associated
with a compound drop consisting of a vapour phase partially surrounded by its own
liquid immersed in another immiscible liquid. The exact solution of this compound
drop system, describing the growth and translation of an axisymmetric liquid–vapour
drop, was found. Og̃uz (1987) has studied the case of hydrodynamics of partially
engulfed drops and bubbles. The authors in these studies used the toroidal coordinate
system which is highly useful in the treatment of fluid flow problems involving lens-
shaped axisymmetric bodies as was shown by Payne & Pell (1960). A review on the
subject of the dynamics of compound drops is given in Johnson & Sadhal (1985).
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Figure 1. Configuration of a partially engulfed fluid–fluid compound drop.

In many processes involving compound drops, a heat transfer occurs between the
compound drop and its surrounding fluid. The heat transfer characteristics of a
partially engulfed gas–liquid compound drop translating in a different immiscible
fluid appear to have been first studied by Sideman & Taitel (1964), who used pentane
and butane drops as the dispersed phase evaporating in a continuous phase of
distilled water. Vuong & Sadhal (1989b) computed the evaporation of a pentane
drop in glycerol. Dammel & Beer (2003) have studied the case of heat transfer
from a continuous liquid to a drop of a second immiscible liquid, which rises due
to buoyancy and simultaneously evaporates. In all these studies, the velocity was
computed independently from the temperature field. It is known, however, that heat
transfer processes can significantly influence the dynamics of interactions of drops
and bubbles in non-isothermal multiphase systems. When a bubble or drop is placed
in a fluid in which the temperature changes from one place to another, temperature
variations are expected at the interface of the fluid particle. The consequence is a
variation of the local tension on the surface which causes a tangential surface traction
from lower to higher tension regions, which results in motion on both sides of the
interface and a net migration of the drop or the bubble normally towards the heat
source. We refer to this motion as a thermocapillary or Marangoni migration. The
thermocapillary or Marangoni flow is especially important in cases when the natural
buoyancy-driven motion is suppressed, e.g. in the absence of gravity force or when
the densities of the phases are nearly equal and in microscale systems. Many studies
devoted to the thermocapillary migration and interaction of separate drops were
aimed to simulate these special applications. A comprehensive review is given in a
monograph by Subramanian & Balasubramaniam (2001).

Non-uniformity of a temperature field in a suspension of drops may be imposed not
only by a distant boundary condition but it may be caused by heat transfer between
phases which eventually results in spontaneous thermocapillary migration by nearby
particles towards or apart from each other. Spontaneous thermocapillary effect is
typical for several drops, which are not in thermodynamic equilibrium between them
or with the ambient phase. The heat transfer that occurs between the phases in
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such systems induces non-homogeneous temperature field that causes surface tension
gradients and, hence, thermocapillary migration of the dispersed species. The model of
spontaneous motion of two separate drops induced by an interfacial mass transfer was
first suggested by Golovin, Nir & Pismen (1995) and has been studied subsequently in
a series of works by Lavrenteva, Leshansky & Nir (1999), Lavrenteva & Nir (2001),
Berejnov et al. (2002), Lavrenteva et al. (2002) and Bialik-Rosenfeld, Lavrenteva &
Nir (2007).

A number of works concerning thermocapillary migration of compound drops with
complete engulfment is available in the literature as well. The dynamics of concentric
compound drops under externally imposed temperature or surfactant concentration
gradient was studied by Stone & Leal (1990), Borhan, Haj-Hariri & Nadim (1992)
and Haj-Hariri, Nadim & Borhan (1993). The case of eccentric compound drops
was investigated by Morton, Subramanian & Balasubramaniam (1990). The motion
that results from both temperature field and residual contaminations applied at the
surface of a liquid system was analysed by Lyell & Carpenter (1993). The spontaneous
Marangoni migration of a compound drop due to the secretion of a surface-active
substance by a completely engulfed droplet at an off-centre location was studied by
Tsemakh, Lavrenteva & Nir (2004).

Experimental studies regarding the heat transfer characteristics of a partially
engulfed gas–liquid compound drop translating in a different immiscible fluid appear
to have been first introduced by Sideman & Taitel (1964). They used pentane and
butane drops as the dispersed phase evaporating in a continuous phase of distilled
water. Later on, Tochitani et al. (1977a, b) used a highly viscous fluid (glycerol) as the
continuous phase, so they were able to maintain the pentane drop close to a spherical
shape and the drop rose in a rectilinear manner from the initial to the final states.
A simple method to form liquid–gas compound drops is to let air bubbles rise from
one liquid into another one above it. The motion of an air bubble rising through a
liquid and crossing a plane interface into another immiscible liquid of lower density
has been experimentally studied by Mercier et al. (1974), Mori et al. (1977), Mori
(1978) and Hashimoto & Kawano (1990). With distilled water as the lower layer
and lighter oil as the upper, it was found by Mercier et al. (1974) that the water
attaches onto the bubble as it passes upward into the oil. Various mineral oils were
used for the upper phase and the observations showed, as would be expected, that
with increasing the viscosity of the oil phase, the bubble motion slowed down. In
other experiments, Hashimoto & Kawano (1990) observed that configurations more
complex than completely engulfed and partially engulfed compound drops come into
existence.

The subject of thermocapillary-induced motion of a partially engulfed compound
drop remains almost unexplored so far, though most of the processes involving
compound drops mentioned above are accompanied by intensive heat transfer and
thus a significant influence of the Marangoni effect on these processes may be
expected. In our previous work (Rosenfeld, Lavernteva & Nir 2008) we have studied
the dynamics of an axisymmetric hybrid drop in an infinite viscous domain. This is
the first study of the motion of the partially engulfed compound drop induced by the
Marangoni effect due to an imposed linear temperature field. The particular case
studied there was limited by the assumption of equal thermal conductivities of all
three phases and hence in that case the temperature field remains unperturbed. It
was found that, typically, the motion was induced in the direction of the temperature
gradient. Nevertheless, some interesting limiting cases in which the hybrid drop moved
against the temperature gradient were observed as well.
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The aim of the present work is to provide a general study in which the hybrid
drop is affected by a temperature field imposed externally or temperature variations
caused by spontaneous heat transfer between the phases. In this study we explore the
effect of varying physical properties such as thermal conductivities, viscosities and
the dependence of surface tension on temperature, as well as the relative volumes
of the phases in the compound drop. The important effect of the contact angles at
the three-phase boundary is also explored. The results, which are of general nature,
are demonstrated via a sequence of particular examples in which the solution of the
complex problem is considerably simplified. We begin by studying the thermocapillary
motion of a non-conductive and partially conductive compound drops. We further
investigate the influence of the conductivity ratio on the motion of the hybrid drop in
the case of a compound drop comprised of a spherical drop and an attached spherical
segment. We conclude by investigating the spontaneous thermocapillary motion of
the partially engulfed compound drop. In § 2 we define the general problem and the
differences between the cases of externally imposed temperature field and spontaneous
induced temperature variations. The method of solution is described in § 3. In § 4 we
describe the details of the various cases examined while in § 5 we depict and discuss
the calculated results.

2. Statement of the problem
Consider a partially engulfed compound fluid drop in which the phases are

immiscible, which is embedded in a non-isothermal viscous medium. A schematic
description of the drop is depicted in figure 1.

The compound drop consists of two phases and posses three fluid–fluid interfaces
that intersect at a three-fluid contact line. We assume that the surface forces dominate
over the viscous forces and that the interfaces do not deform due to the motion and
preserve their static configuration. Following Torza & Mason (1970) we conclude
that, in the absence of an external body force, the interfaces are spherical segments
intersecting at contact angles, which are determined by the force balance at the
triple junction, cos θi = (γ 2

jk − γ 2
ij − γ 2

ik)/(2γijγik), with i, j and k denoting the various
phases (no summation), and γij (i �= j �= k = 1, 2, 3) being the interfacial tensions.
The final equilibrium configuration of the compound drop is determined by these
angles and by the volume ratio in the hybrid body.

2.1. The hydrodynamic problem

When inertia forces are negligible the governing equations for the above system are
the linearized Stokes equations, and have the following form:

∇ · u = 0 (2.1)

∇ · σ = 0, σ = −p I + μi(∇u + ∇uT ), (2.2)

where i =1, 2, 3, is used to denote dispersed and continuous liquid phases, respectively
(see figure 1). u, p and σ are the velocity, pressure and stress fields in the respective
domain, while μi denotes the viscosity in phase i. The boundaries between phases i

and j are denoted by Γij . For a drop moving with a constant velocity U · i z in an
otherwise quiescent fluid, we consider a problem in a reference frame linked to the
drop for which the boundary and interfacial conditions are

u = −U · i z@ |r | → ∞, (2.3)
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where i z is a unit vector in the z -direction (see figure1),

[u] = 0, r ∈ Γij , i = 1, 2; j = 2, 3; i �= j. (2.4)

Since the motion and geometry are steady,

u · n = 0, r ∈ Γij , i = 1, 2; j = 2, 3; i �= j. (2.5)

For interfaces having spherical segment shapes the normal stress differences are
satisfied at the leading order of vanishingly small capillary number by a uniform
stress jump.

The tangential stress balance obtains the form

n · [σ ] · τ = −∂γ

∂τ
, r ∈ Γij , i = 1, 2; j = 2, 3; i �= j. (2.6)

In (2.3)–(2.6), n is a unit vector normal to the surface (see figure 1), [ ] denotes the
jump across each surface of the drop from the outside to the inside and τ is a unit
vector tangent to the surface.

The interfacial tension γ is, in general, a function of the thermodynamic state
variables. In this work, we assume that γ = γ (T ), where T is the local temperature.
We shall consider, henceforth, various cases of non-isothermal environments in which
the temperature variation along the interfaces is induced either by externally imposed
fields or by transport of heat between the phases due to deviation from thermodynamic
equilibrium.

2.2. The thermal problem

In the case of an externally imposed temperature field, we assume that the
continuous phase (phase 2) experiences a constant temperature gradient at infinity
∇T (|r | → ∞) = ∇T∞ i z, with ∇T∞ = const . This imposed temperature field results in local
temperature variations in the vicinity of the hybrid drop at the interfaces Γ12, Γ13 and
Γ23, and hence a variation of the local tension on the surface is induced. The latter
causes a tangential surface traction from lower tension regions towards regions with
higher interfacial tension and a net motion of the entire compound drop.

For the temperature field we need to calculate the heat transfer balance around and
inside the compound drop. It is assumed that the respective Péclet numbers of the
three phases are vanishingly small, which means that heat conduction is the governing
transport mechanism while convective effect is negligible. Hence, the heat balance is
reduced to the Laplace equation

∇2T = 0. (2.7)

The boundary conditions are as follows:

T → ∇T∞z@ |r | → ∞, (2.8)

[T ] = 0, r ∈ Γij ; i = 1, 2; j = 2, 3; i �= j, (2.9)

[q · n] = 0, r ∈ Γij ; i = 1, 2; j = 2, 3; i �= j, (2.10)

where q = −κi∇T , with κi being the thermal conductivity, is the heat flux.
Non-uniformity of a temperature field in a suspension of drops may be imposed

by distant boundary condition (as in the previous case) or it may be caused by heat
transfer between the phases that eventually results in a spontaneous thermocapillary
migration of the fluid particles. For example, consider a case of spontaneous
thermocapillary motion where phase 1 has initially a constant temperature TS different
from that of phases 2 and 3, T0. Assume also that κ1 → ∞, and thus the interfaces
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Γ12 and Γ13 are of uniform temperature TS . The heat conducts from these surfaces
towards Γ23 and hence causes temperature distribution on the latter which induces
the motion of the entire compound drop due to the Marangoni effect.

The heat transfer problem in this case is similar to the case of an external
temperature gradient (2.7) but with the following conditions:

T2 = TS @ r ∈ Γ12, T3 = TS @ r ∈ Γ13, (2.11)

T2 → T0 @ |r | → ∞. (2.12)

And conditions (2.9) and (2.10) are satisfied on Γ23.
The solution of the problems defined above produce the temperature fields, which in

turn affect the variation of the surface tension on the various interfaces via condition
(2.6).

3. Method of solution, flow field
We render the length, velocity, stream function and stress non-dimensional using

R, UM, R2UM and μ2UM/R, respectively, where UM denotes a reference velocity to
be defined and R is defined as the radius of a sphere having the same volume as the
total compound drop, i.e. 4/3πR3 = V1 + V3.

The problem formulated above is axisymmetric. Instead of solving for the velocity
and pressure distributions we choose to use Stokes stream function ψ .

The general solution for the stream function can be written as in Payne & Pell
(1960) and Vuong & Sadhal (1989a) (see also the Appendix for more details)

ψ (i)(ξ, η) =
1

(cosh ξ − cos η)3/2

∫ ∞

0

φ(i)(η, λ) sinh2 ξP ′
−1/2+iλ(cosh ξ ) dλ i = 1, 2, 3,

(3.1)

where P ′
−1/2+iλ is the derivative of the Legendre function with respect to its argument

and φ(η, λ) consists of a combination of four linearly independent expressions

φ(i)(λ, η) = cos η[A(i)(λ) cosh λη + B (i)(λ) sinh λη]

+ sin η[C(i)(λ) cosh λη + D(i)(λ) sinh λη]. (3.2)

When the distribution of temperature along the interfaces, which determines the
right-hand side of (2.6), is known, the coefficients A(i)(λ), B (i)(λ), C(i)(λ) and D(i)(λ)
are determined using the boundary conditions (2.3)–(2.6). The procedure of finding
these coefficients was developed by Rosenfeld et al. (2008) following methods of Og̃uz
(1987) and Vuong and Sadhal (1989a), who solved the problem of the compound
drop motion in the absence of Marangoni effect. The details of methods of calculation
are given in the Appendix.

In this analysis we follow a procedure common to previous analyses of thermo-
capillary-induced dynamics. We assume that the temperature variation changes the
interfacial tensions, but we neglect the effect on all other bulk and surface physical
properties. This assumption follows the Boussinesq approximation, that is also applied
in analyses of free convection, where only the property that drives the motion is
perturbed. It is meant to emphasize this primary effect and isolate it from all other
secondary effects. The interfacial tension is considered to depend linearly on the
temperature. Indeed, for large temperature variations it is not expected to be linear as
otherwise negative tensions may arise, however, capillary and thermcapillary effects
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are particularly significant for drops and bubbles of small size, at which scale this
dependence can be well approximated to be linear with a good accuracy. We assume,
thus, that the surface tension has the form γ = 1 + γT (T/T0 − 1), where T0 denotes
the temperature at the origin (ρ = z = 0) for the case of external gradient field or
the constant temperature far from the drop for the case of spontaneous Marangoni
motion. γ is normalized by the value of the tension γ̂ (T0) at the inner interface Γ13 and
γT denotes ∂γ /∂T at each interface, a constant value which in most cases is negative.
Also the Marangoni velocity, in which all velocities are scaled, is being defined as
UM = R∇T |γ 13

T |/μ2 , where ∇T = ∇T∞ for the case of externally imposed temperature
field while ∇T = (TS − T0)/R for the spontaneous thermocapillary-induced motion.
These assumptions are conventional in the theory of Marangoni migration of
drops and bubbles (see e.g. Subramanian & Balasubramaniam 2001, for additional
discussion).

We further assume that, since the typical capillary number Ca =μ2U/γ̂ is
vanishingly small, although the surface tension varies along the interfaces, its variation
is not strong enough to cause non-negligible changes in the contact angles and the
configuration of the drop during its motion.

The temperature field is coupled with the flow field via the stress boundary
condition. The tangential stress condition (2.6) in terms of the stream function is
of the form

(cosh ξ − cos ηij )
3/2

c2 sinh ξ

∫ ∞

0

(
∂2φ(i)

∂η2
− μj

μi

∂2φ(j )

∂η2

)
sinh2 ξP ′

−1/2+iλ(cosh ξ )dλ = ±h
∂Tij

∂ξ
,

(3.3)

where the (+) sign applies at Γ12 and Γ13 and the (−) sign at Γ23. Tij denotes the
temperature on Γij and h = (cosh ξ − cos η)/c is a metric coefficient.

The viscous drag force due to the disturbance velocity on the compound drop is
calculated using the asymptotic expression given by Payne & Pell (1960)

F

8πμ2RUM

= lim
r→∞

ρψ (2)

r2
, (3.4)

where r =
√

ρ2 + z2 and ψ (2) is the disturbance stream function in the ambient fluid
which decays at r → ∞. This expression reduces to

F

8πμ2RUM

=
1

2
+

1√
2

∫ ∞

0

(
φ

(2)
total (0, λ) − UN (0, λ)

)(
λ2 +

1

4

)
dλ, (3.5)

where the equality P ′
−1/2+iλ(1) = −1/2(λ2 + 1/4) was applied.

The requirement that the total viscous force on the drop vanishes provides the
velocity of the drops’ migration in the temperature field U.

4. Temperature field
In this section, we consider various cases involving particular temperature fields.

The temperature is scaled by R ∇T∞ for the cases involving external gradient, and by
TS − T0 for the spontaneous Marangoni motion.

4.1. Non-conducting compound drop in an external temperature gradient

In this case, it is assumed that the compound drop has low conductivity and hence
the stress variations occur at the outer interfaces Γ12 and Γ23. In order to find the
temperature field around the compound drop we have used the approach presented by
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Sadhal (1983) and extended by Feuillebois (1989) and Loewenberg & Davis (1993a, b).
The idea is to calculate directly the heat flux in the form

q = ∇ ×
(

Φ

ρ
iφ

)
, (4.1)

where Φ is an unknown function. Calculating the curl in cylindrical coordinates,
expression (4.1) is written explicitly

q = −iρ

1

ρ

∂Φ

∂z
+ i z

1

ρ

∂Φ

∂ρ
. (4.2)

The flux q may also be represented as a gradient of a potential T by the Fourier
law, q = −κ∇T , where κ is the thermal conductivity. Therefore, we can conclude that
∇ × q = −κ∇ × ∇T = 0 which leads to

L−1(Φ) = 0, (4.3)

where L−1 is the axisymmetric Stokes operator (see the Appendix). Using the toroidal
coordinate system, the components of the heat flux are

qξ =
(cosh ξ − cos η)2

c2 sinh ξ

∂Φ

∂η
, (4.4)

qη = − (cosh ξ − cos η)2

c2 sinh ξ

∂Φ

∂ξ
. (4.5)

The appropriate boundary conditions (2.8)–(2.10) take the form

Φ2|ξ,η→0 = −κ2ρ
2

2
= −κ2

2

(
sinh ξ

cosh ξ − cos η

)2

at infinity (4.6)

while
∂Φ2

∂ξ

∣∣∣∣
η12,η23

= 0. (4.7)

It follows from (4.7) that at the interfaces Φ2|η12,η23
is constant which, without loss

of generality, is chosen to be zero.
The general solution for (4.3) satisfying (4.6) may be written in the form

Φ2 = (cosh ξ − cos η)−1/2

∫ ∞

0

(
β2(λ, η) +

κ2

√
2 cosh (λ (π − η))

cosh λπ

)
sinh2 ξP ′

−1/2+iλ

× (cosh ξ ) dλ, (4.8)

where, β2 = B1(λ) cosh(λη)+B2(λ) sinh(λη). B1(λ) and B2(λ) are to be determined using
the boundary conditions (4.7).

B1 =

√
2 κ2 (cosh ((π − η12) λ) sinh (η23λ) − cosh ((π + η23) λ) sinh (η12λ))

sinh ((η12 − η23) λ) cosh (λπ)
, (4.9)

B2 =

√
2 κ2 sinh ((η12 + η23) λ) tanh (λπ)

sinh ((η12 − η23) λ)
. (4.10)

The right-hand side of the stress boundary condition (3.3) can be written as

h
∂T2

∂ξ

∣∣∣∣
η12, η23

= −q2ξ

κ2

∣∣∣∣
η12, η23

= − (cosh ξ − cos η)2

c2 sinh ξ

∂Φ2

∂η

∣∣∣∣
η12, η23

(4.11)
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and the stress boundary condition becomes(
∂2φ(2)

∂η2
− μ1

μ2

∂2φ(1)

∂η2

)∣∣∣∣
η12

= −
(

∂β2

∂η

∣∣∣∣
η12

− κ2

√
2λ sinh (λ (π − η12))

cosh λπ

)
, (4.12)

(
∂2φ(2)

∂η2
− μ3

μ2

∂2φ(3)

∂η2

)∣∣∣∣
η23

=
∂β2

∂η

∣∣∣∣
η23

+
κ2

√
2λ sinh (λ (π + η23))

cosh λπ
. (4.13)

4.2. Partially conducting compound drop, κ1 = 0, κ2 = κ3, in an external
temperature gradient

In this case, we have assumed that the phase 1 is non-conductive and the conductivities
of phases 2 and 3 are equal. The method of solution is similar to that of the case of
non-conducting compound drop described above. The boundary conditions are

Φ2|η 12
= Φ3|η 13

= 0, (4.14)

Φ2|η23
= Φ3|η23

, (4.15)

∂Φ2

∂η

∣∣∣∣
η23

=
∂Φ3

∂η

∣∣∣∣
η23

, (4.16)

where Φ3 = (cosh ξ − cos η)−1/2
∫ ∞

0
β3(λ, η) sinh2 ξP ′

−1/2+iλ(cosh ξ )dλ with β3 =B3(λ)
cosh(λη) + B4(λ) sinh(λη) and Φ2 as in (4.8).

The tangential heat flux at the 2–3 interface is

qξ

∣∣∣∣
η23

=
(cosh ξ − cos η23)

2

c2 sinh ξ

∂Φ3

∂η

∣∣∣∣
η23

=
(cosh ξ − cos η23)

1/2 sinh ξ

c2

×
∫ ∞

0

[
(cosh ξ − cos η23)

∂β3

∂η

∣∣∣∣
η23

− sin η23β3(λ, η23)

]
P ′

−1/2+iλ(cosh ξ ) dλ (4.17)

and the stress boundary condition takes the form∫ ∞

0

∂2φ(2)

∂η2
− μ3

μ2

∂2φ(3)

∂η2

∣∣∣∣
η23

P ′
−1/2+iλ(cosh ξ ) dλ = − 1

κ3(cosh ξ − cos η23)

×
∫ ∞

0

[
(cosh ξ − cos η23)

∂β3

∂η

∣∣∣∣
η23

− sin η23β3(λ, η23)

]
P ′

−1/2+iλ(cosh ξ ) dλ. (4.18)

Using the Mehler–Fock transform of order one given by Sneddon (1972) and
Zabarankin (2007),

H (ξ ) = −
∫ ∞

0

λ tanh(λπ)Ĥ (λ)P ′
−1/2+iλ(cosh ξ )dλ

Ĥ (λ) =

∫ ∞

0

H (ξ ) sinh ξP ′
−1/2+iλ(cosh ξ )

(λ2 − 1/4)
dξ

⎫⎪⎪⎬
⎪⎪⎭ (4.19)

on the right-hand side of (4.18) yields for the stress boundary condition at Γ23

∂2φ(2)

∂η2
− μ3

μ2

∂φ(3)

∂η2

∣∣∣∣
η23

= −λ tanh(λπ)

(λ2 − 1/4)

∫ ∞

0

H1(ξ ) sinh ξP ′
−1/2+iλ(cosh ξ ) dξ, (4.20)

where

H1(ξ ) = − 1

κ3(cosh ξ − cos η23)

∫ ∞

0

[
(cosh ξ − cos η23)

∂β3

∂η

∣∣∣∣
η23

− sin η23β3(λ, η23)

]
× P ′

−1/2+iλ(cosh ξ ) dλ.
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Figure 2. Schematic descriptions of a compound drop in which phase 1 is a complete sphere.

4.3. Compound drop in which phase 1 is a complete sphere, in an external
temperature gradient

A schematic description of this assembly is presented in figure 2.
Here, ρ ′, z′ are the cylindrical coordinates connected to the spherical system centred

in phase 1 and ρ, z are the cylindrical coordinates attached to the toroidal system. The
two cylindrical systems are related through ρ = ρ ′; z = z′ −z0; r = (ρ ′2 + z′2)1/2 = (ρ2+
(z − z0)

2)1/2.
The temperature distribution for this drop when embedded in an external field

is found by solving the temperature problem in spherical coordinates centred in
phase 1. Applying the appropriate boundary conditions (continuity of the heat flux
at the interfaces), we found that, in the case of equal heat conductivities of phases 2
and 3, κ2 = κ3, the temperature fields are

T1 =
3κ2

κ1 + 2κ2

r cos θ, (4.21)

T2,3 =

[
r +

(
κ2 − κ1

κ1 + 2κ2

)
r−2

]
cos θ. (4.22)
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The temperature fields in terms of toroidal coordinates obtain the form

T1 =
3κ2

κ1 + 2κ2

[
c sin η

(cosh ξ − cos η)
+ z0

]
, (4.23)

T2,3 =

(
z0 +

c sin η

(cosh ξ − cos η)

)

×
[
1 +

(κ2 − κ1)/(κ1 + 2κ2)

((z0+c sin η/(cosh ξ − cos η))2+c2 sinh2 ξ/(cosh ξ − cos η)2)3/2

]
(4.24)

where, z0 = c cot η12. The tangential stress boundary conditions become

∂2φ(2)

∂η2
− μ1

μ2

∂2φ(3)

∂η2

∣∣∣∣
η12

=
3κ2

κ1 + 2κ2

4
√

2

3

λ sinh(λ(π − η12))

cosh λπ
, (4.25)

∂2φ(3)

∂η2
− μ1

μ3

∂2φ(1)

∂η2

∣∣∣∣
η13

=
3κ2

κ1 + 2κ2

4
√

2

3

λ sinh(λ(π + η13))

cosh λπ
(4.26)

and

∂2φ(2)

∂η2
− μ3

μ2

∂2φ(3)

∂η2

∣∣∣∣
η23

= −λ tanh(λπ)

(λ2 − 1/4)

×
∫ ∞

0

c

(cosh ξ − cos η23)1/2
∂T2

∂ξ
sinh ξP ′

−1/2+iλ(cosh ξ ) dξ. (4.27)

4.4. Spontaneous thermocapillary motion

Here, we have assumed that the interfaces Γ12 and Γ13 are of uniform temperature
TS and that κ2 = κ3. The tangential temperature gradient is induced on Γ23 by the
heat that is conducting from Γ12 and Γ13 towards that surface, thereby inducing a
non-uniform temperature distribution on it. The temperature in phases 2 and 3 is
found in toroidal coordinates to be (Lebedev 1965)

T =
T0

TS − T0

+ (cosh ξ − cos η)1/2

∫ ∞

0

G(η, λ)P−1/2+iλ(cosh ξ ) dλ, (4.28)

where G =C1(λ) cosh λη + C2(λ) sinh λη . C1(λ) and C2(λ) are to be determined using
the boundary conditions T2|η12

= T2|η13
= TS .

C1 =

√
2 (cosh ((π + η13) λ) sinh (η12λ) − cosh ((π − η12) λ) sinh (η13λ))

sinh ((η12 − η13) λ) cosh (λπ)
, (4.29)

C2 =

√
2 (cosh ((π − η12) λ) cosh (η13λ) − cosh (η12λ) cosh ((π + η13) λ))

sinh ((η12 − η13) λ) cosh (λπ)
. (4.30)

The stress boundary condition at the interface Γ23 takes the form

∂2φ(2)

∂η2
− μ3

μ2

∂2φ(3)

∂η2
= − λ tanh λπ

(λ2 − 1/4)

∫ ∞

0

g(ξ ) sinh ξP ′
−1/2+iλ(cosh ξ ) dξ (4.31)
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with,

g(ξ ) =
c

2(cosh ξ − cos η23)∫ ∞

0

G(η23, λ)[P−1/2+iλ(cosh ξ ) + 2(cosh ξ − cos η)P ′
−1/2+iλ(cosh ξ )]dλ.

5. Results and discussion
5.1. The case of a non-conducting compound drop moving under the influence of an

external temperature gradient

When the thermocapillary-induced motion is the outcome of an imposed constant
distant external temperature gradient, the ambient fluid and the compound drop are
not isothermal and hence local temperature gradients appear along the interfaces.
This results in tangential stresses that, in turn, induce motion of the interfaces and
the adjacent fluids. Here we have assumed that the two dispersed phases comprising
the compound drop are non-conductive and hence the thermally active interfaces
are the outer ones Γ12, Γ23. Here and below, an interface at which Marangoni effect
takes place (the right-hand side of the tangential stress balance is non-zero) is referred
to as ‘thermally active’. While an interface is referred to as ‘thermally inert’ if it is
isothermal or its surface tension does not depend on temperature.

Figure 3(a) presents the velocity of the non-conductive compound drop induced by
an imposed temperature gradient versus the volume ratio of the two dispersed phases
with viscosity ratio μ1/μ3 as a parameter (μ2 = μ3). The total volume of the compound
drop is kept constant at 4/3π while the volume ratio is varied. As a first example, the
contact angles are determined using specific surface tension values quoted by Vuong &
Sadhal (1989a, b), which results in θ1 = 0.8722π, θ2 = 0.95π, θ3 = 0.1778π. Gravity
effects were neglected and, for simplicity, we assumed that all derivatives of the three
normalized interfacial tensions with respect to the temperature γT are equal. The
limit V1/V3 → ∞ and μ1/μ3 → 0 simulates a drop that consists mostly of vapour and
the velocity approaches the velocity of a non-conductive bubble moving under the
influence of an external temperature gradient, as was derived by Young, Goldstein &
Block (1959). On the other hand, when V1/V3 → 0 the compound drop consists mostly
of the fluid phase 3 and hence, for all viscosity ratios, the velocity approaches the value
of the velocity of a non-conductive single liquid drop moving under the influence of
an external temperature field. Note that, for a very large viscosity ratio μ1/μ3 → ∞,
the change in velocity appears to be monotonic and tends to zero as the volume ratio
increases. This case corresponds to phase 1 approaching a solid particle with which
we expect no thermocapillary effect. However, when the viscosity ratio diminishes the
transition between small and large volume ratios exhibit a minimum in the induced
velocity, which is evident around μ1/μ3 being of O(1). The velocity versus volume
ratio for a different set of contact angles θ1 = 1.02π, θ2 = 0.5π, θ3 = 0.48π is depicted
in figure 3(b). It can be seen that the shape and tendency of the curves is similar to
that in the former case (figure 3a), however, the minima evident in figure 3(a) are less
pronounced here. Configurations of the compound drops with these sets of contact
angles are shown in figure 3 for small, unity and large volume ratios.

5.2. Partially conducting compound drop in an external temperature gradient

In this subsection we have considered phase 1 to be non-conductive while the
conductivities of the other two phases are equal. Here we have examined two cases.
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Figure 3. Velocity versus volume ratio for various viscosity ratios of the dispersed phases
for the case of non-conducting compound drop. γT = 1 on all interfaces; κ1 = κ3 = 0,
κ2 = 1; μ2 = μ3 = 1. The contact angles are (a) θ1 = 0.8722π, θ2 = 0.95π, θ3 = 0.1778π; (b) θ1 =
1.02π, θ2 = 0.5π, θ3 = 0.48π.

The first one describes the thermocapillary motion of the compound drop due to the
external temperature gradient when all the interfaces are thermally active and hence
the motion is the outcome of surface tension variations on all the three surfaces.
Interesting results emerge from the examination of the case in which the lower
interface (Γ23) is thermally inert and its tension does not depend on temperature.
Here, the non-uniform temperature distribution and the consequent surface tension
gradients take place solely at the interfaces Γ12 and Γ13. Results regarding the first
case are presented in figure 4. One can see that for V1/V3 → 0 the value of the velocity
approaches the value of the velocity of a spherical liquid conducting droplet moving
under the influence of a distant temperature gradient for all viscosity ratios. On the
other hand, when V1/V3 → ∞ the velocity varies with the viscosity ratio from the
value associated with a bubble moving under the influence of an external temperature
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Figure 4. Velocity versus volume ratio for various viscosity ratios of the dispersed phases
for the case of partially conducting compound drop with all the interfaces thermally
active. The contact angles are θ1 = 0.8722π, θ2 = 0.95π, θ3 = 0.1778π; γT =1 on all interfaces;
κ1 = 0, κ3 = κ2 = 1; μ2 =μ3 = 1.

field through the value typical to a fluid particle with μ1/μ3 = O(1) and tends to zero
for a high viscosity ratio, illustrating a solid particle.

In figure 5(a) the second case in which the lower interface Γ23 is thermally inert
is depicted. It is interesting to see that when V1/V3 → 0 the velocity changes its
sign, which indicates that the drop starts to move in the direction opposite to the
temperature gradient. This change of the direction of motion of the compound drop
occurs since, when the drop is comprised mostly of phase 3 and with the appropriate
set of contact angles, the motion of the inner interface Γ13 due to surface tension
variations is the major driving force for the entire compound drop. Thermocapillary
effect results in the flow of liquid near this interface in the direction opposite to
the temperature gradient. Since the external boundaries are relatively inert and the
motion is induced solely by the Marangoni effect at the internal interface, the flow in
their vicinity occurs in the opposite direction (the direction of temperature gradient).
As a result, we observe rather the unexpected phenomenon: the drop moving against
the temperature gradient (downwards). The same effect takes place if the outer
boundaries of a compound drop are thermally active but the internal surface force
induces a flow on the external surfaces in the temperature gradient direction. For the
cases depicted in figure 5(a), this is the case of relatively small volume ratio, where
the inner interface is substantially larger than the upper external one (see sketch of
the shape in figure 3a) and the lower one is thermally inert. In contrast to this, when
all the interfaces are equally active (the case depicted in figure 4), the effect of the
internal interface is always smaller than that of the outer ones and the compound
drop migrates to warmer fluid regions as a single-phase drop.

Figure 5(b) presents a similar calculation with a different set of contact angles. It
can be seen that in this case the phenomenon of motion against the temperature
gradient is not observed even for very small values of the volume ratio (V1/V3) since,
in this case, the effect of the upper interface is never less important than that at the
inner one (see shapes in figure 5b) and, thus, the Marangoni effect at the latter can
never overcome the one at the former.
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Figure 5. Velocity versus volume ratio for various viscosity ratios of the dispersed phases
for the case of partially conducting compound drop with the lower interface (Γ23) thermally
inert. γT = 1 on all other interfaces; κ1 = 0, κ3 = κ2 = 1; μ2 = μ3 = 1. The contact angles are
(a) θ1 = 0.8722π, θ2 = 0.95π, θ3 = 0.1778π; (b) θ1 = 1.02π, θ2 = 0.5π, θ3 = 0.48π.

It is therefore clear that the motion of the drop against the temperature gradient
depends on the drop’s configuration (note once more the differences in the drop
configuration for the two choices of contact angles that are qualitatively depicted in
figure 3). This dependence (direction of motion on the configuration of the compound
drop) is demonstrated in figures 6(a) and 6(b) in which the velocity versus volume
ratio is presented for various configurations of the compound drop. It can be seen in
figure 6 that, with the increase of the outer contact angle (θ2) and as a consequence
the decrease of θ3, the drop changes its direction of motion at a certain volume ratio.
For outer contact angles θ2 � 0.6π the compound drop will move in the direction of
the temperature gradient for any volume ratio. In figure 6(b), the inner angle θ1 was
kept constant at 0.5π while the other two angles were changed, respectively. Here too
it can be observed that, as the value of the outer angle θ2 decreases below 0.95π and
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Figure 6. Velocity versus volume ratio for various configurations of the compound drop for
the case of partially conducting drop with the lower interface (Γ23) thermally inert. γT =1 on
all other interfaces; κ1 = 0, κ3 = κ2 = 1; μ2 = μ3 = 1.

as a consequence the value of the angle θ3 increases, the compound drop will move
in the direction of the temperature gradient for any volume ratio.

The values of the velocity in the direction opposite to the temperature gradient
presented in figure 6 are relatively small. Nevertheless, they are consistent with the
results depicted in figures 8 and 9 (all evident at low V1/V3) where the velocity in the
direction opposite to the thermal gradient has higher values, of the order of those
obtained for the co-directional motion. Indeed, this phenomenon and its intensity
can be affected by other effects such as deformability of the interfaces, inertia or
convective heat transfer, that remain yet to be considered in future studies. A brief
discussion of possible experimental validation of the results is given in the § 6.

It is interesting to compare between the various cases described above and those
in Rosenfeld et al. (2008). Compound drop with equal conductivities, non-conducting
compound drop and partially conducting compound drop with the sub-cases of a
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Figure 7. A comparison between the cases of equal conductivities, non-conductive drop
and partially conducting drop with the lower interface thermally active and inert; θ1 =
0.8722π, θ2 = 0.95π, θ3 = 0.1778π; μ1 = μ2 = μ3 = 1; γT = 1 on all interfaces.

lower interface thermally active and inert, respectively. This comparison is presented
in figure 7. Note that all three cases, in which phase 1 is non-conductive, approach a
common asymptote when the volume of this phase is dominant. In the other extreme
a greater variation in the migration velocity is observed when V1/V3 diminishes. When
phase 1 is conducting it is expected that the high volume ratio asymptote varies as
well.

It is clear from the various cases described above that the relative intensity of
the variation of the various surface tensions with temperature plays an important
role in dictating the dynamics of the compound drop. In certain cases, even reversal
of the direction of motion of the drop is evident. It was shown in figure 5(b)
that for the specific drops’ configuration of θ1 = 1.02π, θ2 = 0.5π, θ3 = 0.48π and
when the lower interface (Γ23) is thermally inert the drop does not change its
direction of motion even for very small values of the volume ratio. It can further
be noticed in figure 4 that when the lower interface (Γ23) is thermally active, the
compound drop does not change its direction of motion. In order to study the
effect of relative ‘thermal activity’ of the interfaces we define a parameter GD

as the ratio of the derivative of the external tensions with temperature to the
inner one, G

(12)
D = γ

(12)
T /γ

(13)
T , G

(23)
D = γ

(23)
T /γ

(13)
T , γ

(ij )
T = ∂γij /∂T , γ

(13)
T = 1, where, for

the case in which the lower interface is thermally inert G
(23)
D = 0. In figures 8 and 9,

the migration velocity is plotted against the volume ratio for various values of
G

(ij )
D with the viscosity of all phases being uniform for the two cases (the lower

interface thermally inert and thermally active). The case in which the lower interface
is thermally inert is presented in figure 8. For the particular choice of contact
angles, θ1 = 1.02π, θ2 = 0.5π, θ3 = 0.48π, and when the temperature dependence of the
interfacial tension of the external surface (Γ12) is negligible (G(12)

D = 0) a migration
velocity against the temperature gradient is evident spanning a significant range of
the dispersed phase volume ratio. This range diminishes as G

(12)
D increases but the

negative migration velocity persists up to a ratio of about G
(12)
D = 0.1. The second case
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for the case of partially conductive compound drops with the lower interface thermally
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Figure 9. Velocity versus volume ratio for various ratios of tension temperature dependence
for the case of partially conductive compound drops with the lower interface thermally active;
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in which the lower interface is thermally active, G
(12)
D =G

(23)
D , is presented in figure 9.

It can be seen that a migration velocity against the temperature gradient is observed
for a significant range of G

(ij )
D . Note that when the domain of negative velocity first

appears it is confined to a volume ratio interval of O(1). This interval is increased as
the value of G

(23)
D = G

(12)
D decreases.
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Figure 10. Velocity versus volume ratio for various conductivity ratios; θ1 = 1.02π,
θ2 = 0.5π, θ3 = 0.48π; μ1 = μ2 = μ3 = 1; κ2 = κ3 = 1; γT = 1 on all interfaces.

5.3. The effect of conductivity ratio

In this subsection, we examine the effect of conductivity ratio on the dynamics of
the drop. For simplicity we consider the less cumbersome case in which the upper
part of the drop is spherical while the shape of lower part varies, and with κ2 = κ3

while κ1 is arbitrary. The results are depicted in figure 10. It can be seen that when
the thermal conductivity of phase 1 is much lower than that of phase 2 (and 3),
the compound drop behaves as a partially conductive drop and when V1/V3 → ∞
its velocity approaches the value of the velocity of a non-conductive drop moving
under the influence of an external temperature gradient. On the other hand, when
the thermal conductivity of phase 1 is much higher than that of the other phases the
temperature at the interface of the upper phase is almost uniform and hence when
V1/V3 → ∞ the velocity decreases to zero since there is no driving force for the motion
of the compound drop. In all the cases the migration velocity approaches the limit
of a single phase conducting drop (with κ2 = κ3) as V1/V3 → 0. Note also that when
V1/V3 is large the velocity decays with increasing κ1/κ3 while when V1/V3 diminishes
this behaviour is reversed.

5.4. Spontaneous thermocapillary motion

Spontaneous thermocapillary motion occurs when the system is not in thermodynamic
equilibrium between the drop phases or with the ambient fluid. Heat transfer that
occurs between the phases in such systems induces non-homogeneous temperature
field that causes surface tension gradients and, hence, the thermocapillary migration
of the compound drop is expected. For an illustration, we consider the case in which
phase 1 is assumed to have constant temperature different from that of phases 2 and 3.
This situation can be facilitated by assuming a large heat capacity in phase 1 with
κ1 → ∞. Thus, to a first approximation the temperature at the interfaces Γ12 and Γ13

is uniform, TS . The heat conducts from these surfaces towards Γ23 and hence causes
a non-uniform temperature distribution on the latter and the motion of the entire
compound drop due to the Marangoni effect. Figure 11 presents the velocity of the
compound drop versus the volume ratio with viscosity ratio as a parameter for two
choices of contact angles. It can be seen that for the limit of V1/V3 → ∞, when the
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Figure 11. Velocity versus volume ratio for various values of the viscosity ratio;
μ1 =μ2 = 1; κ2 = κ3 = 1. The contact angles are (a) θ1 = 0.8722π, θ2 = 0.95π, θ3 = 0.1778π;
(b) θ1 = 1.02π, θ2 = 0.5π, θ3 = 0.48π.

drop is comprised mostly of phase 1 which is of uniform temperature, and hence
no Marangoni effect is expected, the velocity approached zero with the diminishing
of the driving force for its motion. Moreover, the velocity decays also at the limit
V1/V3 → 0 and hence it obtains a maximum value at a certain volume ratio in which
the heat transfer between the two dispersed phases is the most efficient to induce
dynamics. A comparison between the two figures reveals that the location of this
maximum depends on the choice of contact angles and more weakly on the viscosity
ratio between the phases of the compound drop.

The temperature distribution at the Γ23 interface, at which the thermocapillary
motion is induced, is depicted in figure 12. The temperature is plotted versus the
coordinate ξ (see figure 15) for several values of the volume ratio (V1/V3). When
V1/V3 → ∞ the temperature distribution at the interface is almost constant and hence,
as was demonstrated in figures 11(a) and 11(b), the velocity of the compound drop
diminishes. The middle curve (V1/V3 ∼ 1) represents the case in which the heat transfer
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Figure 12. Temperature distribution at the lower interface Γ23 versus the coordinate
ξ for various values of the volume ratio between the dispersed phases. θ1 = 0.8722π,
θ2 = 0.95π, θ3 = 0.1778π; μ1 = μ2 = μ3 = 1; κ2 = κ3 = 1.
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Figure 13. Streamlines pattern of the compound drop, moving with temperature gradient;
κ1 = κ2 = κ3; GD = 1; θ1 = 0.8722π, θ2 = 0.95π, θ3 = 0.1778π; μ1 = μ2 = μ3 = 1; V1/V3 = 2.

between the phases is the most efficient. The efficiency of the heat transfer decays as
the volume ratio decreases, as phase 1 becomes less pronounced.

5.5. Flow fields

Flow streamlines in the reference frame linked to the drop are presented in figures 13
and 14 for the two cases, motion with temperature gradient and motion against it,
respectively. Several vortices are evident in the flow inside compound drop. In the
depicted case a single vortex appears in fluid 3 while a double vortex is seen in fluid 1
indicating the existence of three stagnant rings within the drop and the appearance
of the stream function Ψ = 0 within fluid 1 in addition to the interfaces. It can be
seen that, in both cases, the separation line inside phase 1 is curved in the direction
of motion. When the drop moves towards the hotter region (with the temperature
gradient), it is directed upwards, and when the drop changes its direction of motion
and starts to move to the opposite direction the line is curved against the temperature
gradient.
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Figure 14. Streamlines pattern of the compound drop, moving against temperature gradient;
κ1 = κ2 = κ3; GD = 0 ; θ1 = 0.8722π, θ2 = 0.95π, θ3 = 0.1778π; μ1 = μ2 = μ3 = 1; V1/V3 = 2.

6. Further discussion and conclusions
In this manuscript an analytical method was developed in order to study the motion

of a compound multiphase drop under the influence of an external temperature
gradient as well as the spontaneous thermocapillary motion of such a drop. In both
cases the inhomogeneous distribution of temperature at the hybrid drops’ interfaces
results in surface tension variations which, in turn, induce Marangoni-type flow and
migration of the fluid particle. The case of the motion of a compound drop due to
an external temperature gradient was considered for following three limiting cases:

(i) Non-conducting compound drop. In this case it was shown that the velocity
approaches that of a non-conducting compound bubble when the compound drop
is comprised of mostly non-viscous phase and it approaches the velocity of a non-
conducting nearly solid particle when the drop is comprised of mostly a highly viscous
fluid.

(ii) Partially conducting compound drop. Here it was shown that when the lower
interface (Γ23) is not thermally active and when the drop is comprised mostly of
non-viscous phase, the drop changes its direction of motion and moves against the
direction of the temperature gradient. This occurs since in that case the motion is
driven mostly by tension variations at the interface which separates the two phases
comprising the drop (Γ13). It was further shown that this phenomenon occurs for
several specific configurations (contact angles) of the compound drop while for other
configurations it cannot be observed. When the lower interface (Γ23) is thermally
active, the values of the velocity approach the value of a non-conductive single
bubble when the drop is comprised mostly of non-viscous non-conductive phase and
it approaches the value of the velocity of a conductive solid particle when the drop is
comprised of a highly viscous conductive phase. The phenomenon of motion against
the temperature gradient can be observed here as well in case when the motion of
the inner interface (Γ13) due to surface tension variations becomes the major driving
force for the motion of the entire compound drop. These results can be highly useful
since it was shown that there is a control mechanism in which one is able to control
the direction of motion of the compound drop.

(iii) Compound drop comprised of a full sphere and an attached spherical segment.
Here we have studied the influence of the conductivity ratio on the motion of the
compound drop. It was shown that when the thermal conductivity of the upper
phase (phase 1) is much lower than that of the other two phases the velocity of the
drop approaches the velocity of a partially conductive drop and when the drop is
comprised of mostly phase 1 the value approaches that of a non-conductive liquid
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sphere moving under the influence of an external temperature gradient. On the other
hand when the thermal conductivity of phase 1 is much higher than that of the other
phases and for a compound drop comprised of mostly phase 1 the velocity decreases
to zero since, in this case, the driving force for the motion of the drop is diminished.

In most cases where the motion induced by an external temperature field the
velocity of the compound drop exhibits a minimum when respective volumes of the
drop phases are nearly equal. The velocity of this configuration is much smaller than
the respective asymptotes of V1/V3 → 0 and V1/V3 → ∞ suggesting that V1/V3 ∼ O(1)
represents a compound drop with a relatively high resistance to motion.

Investigation of the case of spontaneous thermocapillary motion of a compound
drop revealed that the drop can migrate due to interfacial heat flux between the phases.
It was shown that when the drop is comprised mostly of the upper phase (phase 1)
and with κ1 → ∞ the value of the velocity approaches zero since the temperature at the
interface of that phase is uniform. Moreover, the velocity value obtains a maximum
at a certain drops’ configuration in which the variation of tension due to the heat
transfer is most pronounced. The location of this maximum value changes with each
configuration of the compound drop.

The results of the research should be useful for a better understanding of the role
of the Marangoni effect in natural and technological processes involving multiphase
flows with a changing topology of the dispersed phases such as emulsification, liquid–
liquid extraction, composite material processing, etc.

The analysis in this paper is restricted to the motion induced solely by the
Marangoni effect in the absence of other external forcing. The motion of a partially
engulfed compound drop induced solely by gravity and buoyancy was studied by
Og̃uz (1987) and Vuong & Sadhal (1989a). Their derivations were revisited also
in our recent paper (Rosenfeld et al. 2008). Due to the linearity of the problem,
the velocity of a partially engulfed drop moving under the simultaneous effect of
gravity and thermocapillarity can be obtained by a simple superposition of the
two results. The physical results are anticipated to be similar to those obtained
for a single-phase drop (see, e.g. Young et al. 1959), e.g. an upward temperature
gradient will hinder gravitational sedimentation of a heavy drop and, at a critical
magnitude of this gradient, the gravity and thermocapillary forces will be balanced
halting the drop motion. These phenomena can probably be observed in experiments
similar to those conducted by Young et al. (1959). In such experiments it can be
anticipated that the deformations of the interfaces will differ from those in the case
of a single-phase drop, since the variation of the temperature, as the drop propagates
to hotter regions, alters the contact angles in addition to the effect on the three
interfaces.

No experiments concerning the thermocapillary motion of partially engulfed drops
are available so far. We believe that the motion in the direction of temperature
gradient can be observed for the compound drops used previously in the experiments
by Mercier et al. (1974), Mori et al. (1977), Mori (1978) and Hashimoto &
Kawano (1990) adapting the classical experimental technique of Young et al. (1959).
Observation of the motion in the direction opposite to that of the temperature
gradient might be a more complicated task, since this phenomenon takes place when
the inner interface is substantially more thermocapillary active than the outer ones,
i.e. the dependence of the interfacial tension on temperature there is considerably
stronger than at the outer interfaces. Thus, such experiments require a very careful
choice of the three phases involved. Additional discussion of the subject is given in
Rosenfeld et al. (2008).
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Figure 15. The toroidal coordinate system.
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Appendix A. Stream function in toroidal coordinates
The stream function ψ satisfies

L2
−1ψ = 0, (A 1)

where L−1 is the axisymmetric Stokes operator. In a cylindrical coordinate system
(ρ, z), it can be written as

L−1 =
∂2

∂ρ2
− 1

ρ

∂

∂ρ
+

∂2

∂z2
. (A 2)

Since the interfaces of the drop are assumed to be of uniform curvatures, following
Vuong & Sadhal (1989a, b), it is beneficial to employ the toroidal coordinate system
(ξ, η) related to the cylindrical system by

z + iρ = ic coth
ξ + iη

2
, 0 � ξ < ∞ , −π � η � π (A 3)

The toroidal coordinate system is presented in figure 15. It can be seen that
constant values of η represents intersecting spherical segments. Here the interface Γij

is identified by ηij , c is the distance between the origin and the focal circle defined
by ξ = ∞ which, in the compound drop, is the three-phase boundary. The real value
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components of the above mapping have the following form:

ρ =
c sinh ξ

cosh ξ − cos η
, z =

c sin η

cosh ξ − cos η
. (A 4)

The velocity components are given by

(
uξ , uη

)
=

(cosh ξ − cos η)2

c2 sinh ξ

(
∂ψ

∂η
, −∂ψ

∂ξ

)
(A 5)

and the shear stress is written as

σξη = μ

[
(cosh ξ − cos η)

(
∂uξ

∂η
+

∂uη

∂ξ

)
+ uξ sin η + uη sinh ξ

]
, (A 6)

where, Ψuniform = U/2(c sinh ξ/(cosh ξ − cos η))2, with U scaled by UM , and the

disturbance Ψ (2) = 1/(cosh ξ − cos η)3/2
∫ ∞

0
φ(2)(η, λ) sinh2 ξP ′

−1/2+iλ(cosh ξ )dλ.
Following Payne & Pell (1960) and Voung & Sadhal (1989a) we combine these two

functions together to get

φ
(2)
total = UN (η, λ) + cos η[A(2)(λ) cosh λη + B (2)(λ) sinh λη]

+ sin η[C(2)(λ) cosh λη + D(2)(λ) sinh λη]. (A 7)

In this expression, N(η, λ) appears from the expansion

1

2

[
1 − c

r

]
= (cosh ξ − cos η)1/2

∫ ∞

0

N(η, λ)P ′
−1/2+iλ(cosh ξ ) dλ (A 8)

with r =
√

ρ2 + z2 and where the first term on the left-hand side arises from the
uniform stream and the second term is subtracted in order to render the integrals
readily convergent. Thus the function N(η, λ) is found to be (Vuong & Sadhal 1989a)

N(η, λ) =
λ sin |η|(sinh λ|η| − sinh λ(π − |η|))√

2(λ2 + 1) cosh λπ
− cos η(cosh λ(π − |η|) + cosh λη)√

2(λ2 + 1) cosh λπ
.

(A 9)

Note that the jump in the coordinate η, described schematically in figure 15, is
located within one of the fluid phases. When applying the boundary conditions it
should prove useful to move the domain cut to one of the interfaces and render the
application less cumbersome. We have chosen to cut the domain at the inner interface
which means that the surface coordinate is now η13 +2π in phase 1 and η13 in phase 3.

Substituting the presentations of the stream function into the boundary
conditions provides 12 linear algebraic equations for the coefficients A(i)(λ),
B (i)(λ), C(i)(λ), D(i)(λ) in the three phases that, thus, can be obtained in an explicit
analytic form for an arbitrary migration velocity U∞ and arbitrary right-hand side of
(2.6). These explicit expressions obtained employing Mathematica are available from
the authors upon request.

For the thermocapillary motion, the stream function coefficients consist of two
additive parts. One is due to the thermocapillary traction at the interfaces, while
another is proportional to the yet unknown migration velocity. Note that the
coefficients A(i)(λ), B (i)(λ), C(i)(λ), D(i)(λ) corresponding to the first part and the
multipliers of U∞ are readily known as explicit analytic expressions that do not
contain any unknowns. Similarly, the force F is a sum of a Marangoni force acting
on a quiescent drop and a Stokes drag proportional to U∞. The condition of zero total
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force exerted on the drop by the Stokes flow, allows to determine the migration velocity
by calculating integrals of the type (3.1) and (3.5) with known integrands. As soon as
the migration velocity is obtained, the stream function is obtained by integration. The
required integrations were performed numerically over a finite interval (0, L) making
use of Mathematica 6 gradually extending the domain of integration until the desired
accuracy of integration is achieved.
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